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A family of matrix theories of elastic wave scattering is derived, and one, which
is in a certain sense optimal, is developed. Called the method of optimal trunca-
tion (MOOT), it results from a minimum principle and can be shown to yield a con-
vergent sequence of approximations. Numerical results for scattering cross-
sections for longitudinal incident waves with ka<10 from fixed rigid obstacles and
voids with axial symmetry are obtained using MOOT, and are compared with results of
other matrix theories. Shapes considered include spheres, oblate and prolate
spheroids, pillboxes, and cones. Convergence is demonstrated. Extension of the
method to elastic and fluid inclusions is discussed, as is its application to
cracks, which may be accomplished by simulating the crack with an incompletely
bonded identical inclusion. Implications of reciprocity and time-reversal invari-
ance are discussed.

I. INTRODUCTION

Proliferation of important scientific and technological applications in geology,
materials science, and nondestructive testing, coupled with the current ubiquity
of large computers, has spurred the development of methods for calculating the
scattering of elastic waves from flaws. In this paper we will consider some of
these methods, in particular the so-called T-matrix theories (1,2,3). We derive
a family of these theories in Section 11, and consider the problem of picking out
an optimal one in Section III. These methods usually involve an expansion of the
scattered displacement field in a finite (truncated)sum of partial-waves, and they
result in sets of linear equations for the partial-wave am~litudes.

A particular choice, resulting from imposing the requirement that it minimize the
mean-square deviance from the boundary conditions, is shown in Section IV to yield
a sequence of approximations which converges as the truncation limit L increases.
We call this matrix theory MOOT, the method of optimal truncation. Numerical re-
sults from MOOT and other methods are presented and compared in Section V, for
some examples wherein the flaw is an axially symmetric void or a fixed rigid ob-
stacle of spheroidal, cylindrical, or conical shape, and the incident longitudinal
wave has kaQO. In Section VI the extension of MOOT to elastic and fluid inclu-
sions, and to cracks, is discussed.

.
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● II. FAMILY OF MATRIX METHODS

Because they are simpler than the equations of elasticity (4), we will illustrate
the methods with+the equations of the incompressible irrotational fluid (S). In
that case, if $(r,t) is the velocity potential

+
v=- ?$ , (1)

then the linearized equation of motion for a homogeneous system is

(VL$$ )$[;,t) = o . (2)

If harmonic time dependence is assumed, this becomes the Helmholtz equation

(V2+k2) $= O , (3)

where the wavenumber k is given by

k’ = w2/c2 = 02p/K . (4)

K is the compressibilitymodulus, p is the equilibrium density, and the pressure is

(5)

If the fluid has within it an inclusion with different density and compressibility
madulus p“ and K“, with volume V bounded by a surface Z (see Fig. 1), then Eq. (3)
with appropriately modified k will again be satisfied inside Z. Continuity of pres-
sure across the boundary requires

P“$(Z-) = PO(;+) “ (6)

(where ;* are positions just outside and inside Z, respectively), and conservation
of matter demands

where 6 is the unit outward normal to Z .

The scattering solution of Eq..(3) which we seek has the form

(7)

(8)

where $. is an incident plane wave, $s
(+)

is an outgoing spherical wave specified

by eige~%lues s = (!t,m),and a is the corresponding complex amplitude. $. and
lnc

@ (+) are solutions ofEq. (3).ss In detail,

~ (+)
= OLm(+)= ,h ‘l)(kr)ylm(O,$),s (lo)



MOOT

(1)
where the spherical Hankel function h~ = jg + iyl in te~s of the spherical Bes-

sel and Neumann functions, and

(11)

‘+) which is regular at the origin. YRm is the usualis the part of $s
spherical harmonic (6).

The partial-wave amplitudes as in Eq. (8) specify the outgoing wave from which the
scattering cross-sections may be calculated. We will now derive, in a nearly tri-
vial way, a family of sets of linear equations for the a’s, the T-matrix theor~es.

Equations (6) and (7) specify the boundary
which is a homogeneous inclusion. For the
problem by restricting the inclusion to be
for which the Dirichlet boundary condition

$(;+) = o

conditions at the surface of a scatterer
moment we will further simplify the
one of two kinds, either a void (cavity)j
of vanishing pressure

void

is satisfied, or a rigid fixed obstacle, for which the Neumann
of vanishing normal velocity

fbt$ (;+) = o obstacle

(12)

boundary condition

(13)

holds. The more general case is discussed in Section VI.

If Eq. (8) is substituted into Eqs. (12) and (13),+the result is, where the argu-
ments of the wavefunctions $ are understood to be r+,

void (14)

obstacle. (15)

Now we introduce a set of functicns {fj], j = 1,2,... cuwhich is complete on X.
Then if the notation

f
~ da U*V = (U,V) (16)

is introduced, Eqs. (14) and (15) when multiplied by f~*(~&) and integrat~d over
Z become

q (f ? )d + (fj~j’es

Equations (14), (15) hold for
to be complete on Z, they are

J“

(+))a

1
,4. ~ = o void (17)

(fj,fi.~$~(+))a] = O obstacle
s (18)

every r+ on the surface Z; because {f.} is postulated
wholly equivalent to Eqs. (17), (!8) #or i = 1.2...-=J.
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These equations can be written in compact form

~d+Qa=O

where

(

[

(fj9J~)

aj~ =

(fj,fi”%s)

and

One can formally solve Eq. (19) for the vector a,

a= - Q-l~d = Td.

void

obstacle

void

obstacle

(19)

(20)

(21)

(22)

(23)

(24)

This defines the T-matrix which linearly transforms the incident wave amplitudes
ds into the outgoing wave amplitudes as.

The set of functions {f”} with which one works in a practical calculation is, how-
ever, never complete. h e has a basis set {fj}$ j = 1,2,...L, where J.,,the trun-
cation limit, is almost always significantly less than infinity. So although if
L + w the matrix equations are completely eq?livalentto the boundary conditions
and T will not depend on what complete set {f.} we choose, in practice L is rather
small and the set must be chosen carefully. +he sets {$s} will also be truncated
at s = L. This insures that the matrices Q are square, and we assume that Q-1
exists.

Conversely, our choice of the truncated set {fj}L ~ affect our calculated re-

sults, and we need to find some criterion to tell us which sets are better than
others, and ideally to pick out an optimum one.

III. MINIMUM PRINCIPLE

We would like to choose {fj}L so that the error in the result- for physical obser-

vable is minimized. Because we do not know the exact values for cross-sections,
we cannot formulate this condition. What we do know exactly are the boundary con-
ditions, namely Eqs. (12) and (13), which the~avefunction @ must satisfy. This
leads us to consider the absolute squares of the deviance from the boundary con-
ditions, integrated over the surface of the scatterer.

void

obstacle

(25)

{26)

,,,,
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I vanishes if and only if $ satisfies the boundary conditions exactly, which hap-
pens in fact only if L +~. For f’initeL, I > 0, and we require that I be mini-
mized with respect to variations in the coefficients as. We substitute Eq. (8)
into Eqs. (25) and (26). If the resultant bilinear expression in the ats has a
minimum, then the derivatives

s =1,2, . ..L. (27)

must vanish. Computing them we find

(28)void

Aich are Eqs. (17), (18) with

void
(30)

obstacle (31)

Equation (30), (31) specify one choice out of an infinite number which could be
made for {fs}. Waterman (1,2) using a very different approach, would prescribe

void (32)

obstacle (33)

for this scalar example. One needs to ask now: which of Eqs, [30), (31) or (32),
(33) , or of an infinite variety of others, will give tbe most accurate and reliable
answers with least labor? This question can really only be satisfactorily answered
by trying them and comparing the numbers obtained with different choices of {fs}L.

We will do this for a few choices in Section V, but one fact, a priori, does favor
Eqs. (30), (31)’ Namely, this choice, because it results from a minimum principle,
yields a convergent sequence of approximations, as we now prove.

IV. CONVERGENCE AND OTHER CRITERIA OF CHOICE

Consider the surface integral Eqs. (25), (26)

lL = I(al, a2, . . . a~,,0, 0 ● . ●)

to be a function of an infinite number of amplitudes as, wit!~constraints

[34)

aL+l - aL+2 = . ● ● = O (35)
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For L < OD,I > 0, and we know that if an exact solution exists, then the minimum
value of I ik’zero for ,L+ ~. Now define ~~ln to be the minimum value of IL which
is attained by variation of its Lcomplex arguments as, that is

min
-lL [

= min I(al, a2, . . . aL, O, 0 . . j

Call the values of al . . aL
(L) (L)

for which the minimum is attained al , a2 , ...
a:L); i.e.

min (L) (L)
lL = I(a1,a2 . . .a~~O, O. o.).

Now consider

1:: = [min I(al, a2 . . . aL, aL+l, OS ● . ●)]
then, because a~L), a~L), ... a\L), O is a possible set of values of

( )
(a~> a*, •~* aL+~) in Eq. (38), it follows that

(36)

(37)

(38)

(39)

and I~ln forms a sequence which converges monotonically to zero as L +~.

From the fact that a particular sequence of bilinear forms in the a 1s converges
monotonically to the exact answer, it does not necessarily follow tfiatother bi-
linear’forms, such as the cross-sections, are also convergent. But it is reason-
able that they are. The coefficients of the bilinear form IL are Q-matrix elements,
whose magnitudes become very large when partial waves with high radial eigenvalue k
are involved. On the other hand, the coefficients in the bilinear form for the
cross-section o do not increase rapidly with k. Therefore IL is more sensitive
than a to changes in as for large s, and the latter should converge faster as L + ~.
That it does so will be illustrated for a particular case in Section V.

The minimization of I [Eqs. (25)(26)] leads uniquely to a set {fS}, given by Eqs.

(30), (31), which in turn leads to a monotonically convergent sequ~nce IL, IL+I, ....

But one could use other criteria for choosing {fS}, Examples are energy conserva-
tion and satisfaction of reciprocity (7,2).

In any non-dissipative system energy is conserved. In a scattering process this
implies the optical theorem, which is a pr~portionality between the imaginary part
of the forward scattering amplitude and the total cross-section. In different terms
it implies ‘unitarityof the S-matrix (8).

The optical theorem imposes a constraint on the truncated amplitudes, which will
thereby be overdetermined, because they are already uniquely s ecified by the matrix
equation [Eq. (24)]. 7Alternatively, one can try to choose {fs , so as to yield a

unitary truncated S-matrix. This can be done (8), but.not consistently with the
minimization of I, which already uniquely determines {fs} .

L
One manifestation of reciprocity is, in the scattering problem, that if the direc-
tions of observation and of the incoming wave are reversed and interchanged (i.e.
(3*W -O., & n + $.), then the cross-section is unchanged. Reciprocity is true



more generally
Reciprocity is

MOOT

than unitarity; the system need not, for example, be conservative.
guaranteed if the T-matrix (or the S-matrix) is symmetric.

Reciprocity imposes another condition on the truncated amplitudes; again it cannot
be satisfied simulatneouslywith minimization of I.

One might choose to satisfy the minimization principle exactly and use the other
symmetries to check the accuracy of the res:lts. Or one might choose to satisfy
the symmetries exactly and the matrix equations approximately. A third alternative
is to solve the overdetermined system in a least-squares sense, satisfying every-
thing only approximately.

We take the first course. Waterman (2) effectively took the seond. Possibly the
third course would be advantageous, but it is more complicated and as yet untried.

v. NUMERICAL EXAMPLES AND COMPARISONS

The T-matrix [Eq. (24)] is given by T = -Q-16, where

(40)

and s = (I,m); !t=O,l, ... - -E,-!2+1,... k.‘max; m - For nonspherical shapes
these matrix elements must be calculated numerically, which comprises most of the
computational labor in a scatteri;lgcalculation. An important simplification is
obtained if the shape X is co~strained to be axially symmetric. Then it is clear
from Eq. (10) that the Q and Q matrices are diagonal in m;

Q~m,~’m~ = amlQIm,Rfm = ~m~QR-m ~I_m (41)
9

where the seccnd equality follows from

‘I.-m = (-l)%;m .

Thus the Q-matrices can be rearranged as follows,

Q.

which represents

(42)

(43)

a block-diagonal matrix, wherein matrices along the diagonal are
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(
%ml,mm

.

.

.

‘Imam, mm

?mn,m+l In

. . . . . .

. . . . . . .

● ✎ ✎✎✎☛ ✎

Qmn@ m
max

.

●

.

‘k m,f.maxm
max

This is an important simplification because the inverses and products of block-
diagonal matrices are again block-diagonal. Thus

and

T .(’::,:,%ax)
where

,(In) = - Q(m)-16(m)

(44)

(45)

(46)

(47)

Therefore the T-matrix, and hence the amplitudes a can be calculated separately
for each m. The largest matrix we ever need to in$!!~tor multiply has rank
(&ax + l),which is the square root of the rank of rhe T-matrix for a shape with
no symmetries.

It should be emphasized that although we have taken the axis of symmetry of the
scatterer to be i’ the z-direction neither the incoming plane wave nor the direc-
tion of observation are constrained. The T-matrix does not depend on O., $0 ; once
we have calculated T we can immediately get the scattered amplitudes for any inci-

.
dent dlrectlon, VIZ, from Eq. (9),

(48)
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The differential cross-section ~ is the scattered power per unit solid angle

divided by the incident power per unit area: it is easy to show that it is

CIf.J -2

P

-J1-l 2

d~=k alm ylm(e,$)
m

(49)

Although the equations we have written have been exclusively for the scalar case,
similar ones, with more components, can be written for elastic waves (4). The
numerical results that we now present are for the latter case, whichis more com-
plicated because the elastic displacement is a vector. Thus the scalars in the
surface integrals Eqs. (20)-(23) are replaced by the vectors

(50)

(51)

and scalar products are taken in the integrals. ~ and ~ are the displacement
and surface traction (stress tensor contracted with n) vectors respectively. The
radial and azimuthal eigenvalues have been supplemented by a polarization p = 1
(longitudinal),2,3 (transverse).

Comparison Between Different Basis Sets {fs}L.

The case we consider here is the scatterngof a longitudinally pclarized elastic
wave incident at 45° on an oblate spheroidal void. The prescription of MOOT for
this case is

+(+)
fs=t

*’
(52)

where, again, the (+) means that the surface traction is constructed from outgoing
waves. But several other choices besides Eq. (52) suggest themselves as being
just as easy to calculate with, to wit,

4

i
ph

‘plm

s(o)
p5n

fs = 4
t(o)

m

(S3a)

(53b)

(53C)

(53d)

(53e)

(53f)
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The first two are constructed from regular Bessel functions, the last two from
outgoing waves (Hankel functions) an?.the middle two have no r dependence, but
are merely linear combinations of vector spherical harmonics, obtained by setting
r = a in Eqs. (53a) and (53b).

Figure 2 shows computed results for the total longitudinal cross-section for all
of these choices for ka = 1 (a is the radius of the oblate spheroid,which in,this
figure has aspect ratio 2/3). These results support the view that for this
scattering situation, at least, the outgoing waves (e) and (f) are to be preferred.
This choice is reinforced by the results shown in Fig. 3,whichis the same as the
preceding one except that the oblate spheroidal void now has aspect ratio 1/2.
Whether or not the surface traction (f) is superior to the displacement (e) is
not decided by this nata. On subjective esthetic grounds we prefer (f); it is
prescribed by MOOT.

Convergence of Truncation Sequence

As discussed above, the sequence of surface integrals IL, IL+l”o” converges

monotonically. It is of interest to see for a particular case just how fast
the convergence is, and how it is
cross-section. Numerical results
incident longitudinalwave from a
rigid obstacle. They confirm the
the sequence of approximations to
not monotonically.

correlated with the convergence of an observable
are presented in Fig. 4 for scattering of an
sphere and from a plolate spheroidal fixed
monotonic convergence of I, and indicate that
the cross-section converge much faster, albeit

Examples of Differential Cross-Sections

Scattering of an incident longitudinal wave withka = 10 from a conical void in
titanium is shown in Fig, 5. This cone has radius equal to its height; the
incident direction is (eo, $ j = (135°, OO). Peaks appear in the longitudinal
cross-section both in the fo~ward and the specularly reflected directions.

Mode-converted scattering of an incident longitudinal wave from an oblate
spheroidal void in titanium is shown in Fig. 6. Again ka = 10, but (6., $.) =

(90°, 0)0 The incident wave is longitudinallypolarized here; the boundary
produces a transversely polarized component in the scattered wave {mode conversion).
Symmetry requires that the cross-section vanish in the forward and backward
directions; these points are plotted at -100 db.

Figure 7 has geometry similar to that of Fig. 6, but the target is now a pillbox
with aspect ratio 1/2 (height = radius). The forward peak has diffraction
minima surrounding it, and there is evidence of specular reflection from the
pillbox side. The longitudinal cross-section is the ordinate.

Spot checks on the consistency of our results with the optical and reciprocity
theorems have been made. Both agree within about 1/2 db for oblate spheroidal
voids with aspect ratio 1/2 and ka ~ 2. Agreement deteriorates for larger ka
and more extreme shapes because the angular variation becomes more rapid.

VI. INCLUSIONS AND CRACKS

Referring again to Fig. 1, we imagine that Z is filled with a compressible
irrotational fluid with density P’ and compressibility K’, and tk.econditions that

.
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must be satisfied at the boundary are given by Eqs. (6) and (7]. In analogy with
Fqs. (25), (26) we form the surface integrals

J=
JI d“F&) - fi”8$(~+)12du,
z

(s4)

(s5)

and we need an additional expansion for the wave function inside the defect. So

for ~ inside Z we put

(56)

where only the regular solutions of the inside Helmholtz equation

(V? +k’2) @) = ()
(57)

Fig. 1. Scattering geometry. A
homogeneous flaw of volume V with a
surface Z is imbedded in the host medium.
A wave is incident with wavenumber k at
polar and azimuthal angles (O., $.).
Spherical outgoing scattered
waves emanate from the flaw: the
direction of observation is (6, 1#1).

contribute, because the origin is always assumed to be inside Z. Now both I and J
are bilinear forms in as and a’s, a total of 2L amplitudes. We can solve for
as follows. Form a positive definite linear combination of I and J:

K= ctI+ (1 - a)J,

hith O < a < 1 and minimize K with respect to variations in as and as’.

y_ .
3as

o

?K
q= o

. .

$quations (59) and ~6f))are both matrix equations for the amplitude vectors ~
a’ in L dimensions; the matrices occ:lrrintiin them are surface integrals like
~ (Eqs. (20)-(23));

them

(58)

(59)

(60)

and
Q and

‘With the definitions

, ! .:,
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Q= (J+) P*(+)

(
)

Q=
~o(+):~~)

Q’ =(J+) * P’v
)

Q, .
(
P’i, P’J,

)

Gt = (PO, &),

(61)

and a set R, ~, . . , which is
replaced with fi~# , we construct

P= aQ + (1 - CX)R

the same as Q, ~, . .Z. except p (and p!) is
a set of matrices P, P, . . . according to

● (62)

Then Eqs. (59) and (60) can be written

and the unobserved interior c?IrnPlitULk!S :1 eliminated;

+
a=

[
- P - PIP” H-lp,t-l~

]
- ptp+t 7. (65)

This equation still contains the parameter U, which can be c;,usento affect one or
more of a number Gf things: 1) the matrices which must be inverted may be ill-
Conditioned for some values of a, 2) the rate of convergence of the truncation
sequence will depend on a, 3) the accuracy as reflected by how well the optical
theorem and/or reciprocity are satisfied will depend on a.

Cracklike defects present a special problem in a scattering calculation. One might
hope that a crack could be considered to be the limit of a void as opposite sides
squeeze together and the volume goes to zero. This introduces serious problems
in the partial wave expansion, because the origin must be inside the crack, and
the outgoin~ partial waves contain irregular Bessel functions. So we would like
to consider the crack to be part of a surface which has a mathematical interior.
Thus consider Fig. (8), which depicts cur view of a plane circular crack. It is
simulated by a truncated spherical inclusion, for which t-heincluded material is
identical to that outside, and the boundary conditions imposed are free-surface
both inside and outside on the plane circle, and continuity of both displacement
and surface traction is required over the spherical surface.

A straightforward treatme.. of the crack as a special case of the inclusion is
foiled by a well-known feature of displacements and stresses irlthe neighborho d

~o.fa crack edge. Na ely, they are singular, the displacements behaving like c-,
the stresses like c-E, where e is the distance from the field ~oint to the edge of
the crack. The futility of attempting to describe these with a partial-wave
expansion is manifest; fortunately exact solutions in the neighborhood of the edge
are known in terms of a small number of parameters. Using them, work on the
~plication of MOOT ta cracks is in progress and will be reported elsewhere.
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Fig, 4. Normalized surface integrals
I (dashed lines) of the square of the
vector displacement for scattering
from spherical (*) and prolate
spheroidal (~) rigid obstacles. AlSO

shown are calculated total longitud-
inal cross-sections for
(eo$ $0) = (45°, OO). The incident
wave is longitudinal with ka = 5
(a = radius of the sphere); the
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has the same volume ~s the sphe?e.
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Fig. 5. Differential longitudinal
cross-section for a right circular
conical void with aspect ratio 1/2.
The cone has its flat side up and

‘e#’oo)“
= (135°, OO); thus a specular

re lectlon would he expected at
(e, O) = (45°, OO). The medium is
titanium; the incident wave is
longitudinallypolarized and has
ka = 10.

\
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Fig. 6. Differential mode-converted
cross-section for scattering of a
longitudinal wcve incident at
(f30,$ ) = (90’, 0°) withka= 10
from a: oblate spheroidal void
(aspect ratio 1/7) in titanium.
Symmetry requires the cross-section
to vanish in the forward and backward
directions; it is plotted at -100 db.
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Fig. 7. Longitudinal scattering from a
pillbox-shaped void in titanium. The
incident wave has ka = 10 and
(co> do) = (90°, OO); the aspect ratio
is 1/2.

Fig.8. Simulation of a circular crack
by an identical inclusion. Continuous
boundary conditions are imposed every-
where except on the cross-hatched
circle where free-surface boundary
conditions are imposed both from above
and from below.
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